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ABSTRACT
Newton’s third law, action = reaction, is a foundational statement of classical mechanics. However, in natural and living systems, this law
appears to be routinely violated for constituents interacting in a nonequilibrium environment. Here, we use computer simulations to explore
the macroscopic phase behavior implications of breaking microscopic interaction reciprocity for a simple model system. We consider a
binary mixture of attractive particles and introduce a parameter that is a continuous measure of the degree to which interaction reciprocity
is broken. In the reciprocal limit, the species are indistinguishable, and the system phase separates into domains with distinct densities and
identical compositions. Increasing nonreciprocity is found to drive the system to explore a rich assortment of phases, including phases with
strong composition asymmetries and three-phase coexistence. Many of the states induced by these forces, including traveling crystals and
liquids, have no equilibrium analogs. By mapping the complete phase diagram for this model system and characterizing these unique phases,
our findings offer a concrete path forward toward understanding how nonreciprocity shapes the structures found in living systems and how
this might be leveraged in the design of synthetic materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146822

INTRODUCTION

Living and natural systems across all length scales can appear
to violate Newton’s third law. A familiar example is the so-called
“predator–prey” interaction, whereby one entity (the predator) feels
an attractive force toward the other, while the other (the prey) is
repelled. These effective nonreciprocal interactions can emerge from
a host of complex factors and can have far-reaching implications
on collective phenomena, phase transitions, and pattern formation.
In the living world, examples range from the interactions amongst
bacteria1,2 at the microscale to the dynamics of animal herds3,4 at
the macroscale. Synthetic systems with nonreciprocal interactions
have also been increasingly realized, with nonreciprocity emerging
in systems as diverse as dusty plasmas,5–10 colloidal suspensions,11–14

and even solid metamaterials.15–17 The understanding of the struc-
ture and phases of biological systems and leveraging nonreciprocal
interactions in synthetic materials will require a fundamental under-
standing of both the origins and implications of these effective
interactions.

Effective forces acting on particles of interest have long been
known to shape the structure and properties of condensed matter

systems. These forces emerge from the coarse-graining of degrees
of freedom, such as other species present within the system. When
the coarse-grained degrees of freedom are in equilibrium, the struc-
ture of the effective forces is severely restricted: the one-body forces
(e.g., fluctuating Brownian and dissipative forces acting on the
solute upon coarse-graining a molecular solvent) must satisfy the
fluctuation–dissipation theorem (FDT) and many-body forces (e.g.,
the pairwise depletion force between larger solutes upon coarse-
graining smaller solutes) must be conservative and consistent with
Newton’s third law.18–22

Coarse-graining degrees of freedom that are out of equilib-
rium unlocks a new range of possibilities. In a nonequilibrium
environment, one-body forces need not satisfy FDT with these
“active” forces, resulting in novel phase transitions and collective
phenomena.23,24 A driven environment may also generate effec-
tive nonreciprocal many-body forces.25–34 The consequences of vio-
lating interaction reciprocity on phase behavior remain unclear
(especially in comparison to those of one-body active forces)
and have motivated the development of a variety of theoretical
perspectives.27–32,34
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In this article, we explore the consequences of violating
Newton’s third law on the phase behavior of a model system where
noncreciprocity can be continuously tuned, defining an additional
axis on the phase diagram. Increasing nonreciprocity not only leads
to exotic states of coexistence, but may also stabilize homogeneous
states resembling active fluids. Our findings thus reveal that non-
reciprocal interactions may impact the phase behavior in new and
unexpected ways and constitute an important step forward toward
the development of a multicomponent nonequilibrium coexistence
theory.

MODEL SYSTEM

Elucidating the influence of nonreciprocal interactions on
material phase behavior requires a model system in which the degree
of nonreciprocity can be continuously varied. We consider a binary
mixture of particles of species L and G with the pairwise force exerted
on particle i by particle j taking the following form:9,27,35,36

Fi j(r) = FC
i j(r) ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[1 − Δ(r)], i j ∈ LG,

[1 + Δ(r)], i j ∈ GL,

1, i j ∈ LL or GG,

(1)

where r is the interparticle distance vector (with magnitude r),
FC

i j(r) is a conservative interaction force satisfying Newton’s third
law (i.e., FC

i j + FC
ji = 0), and Δ(r) is a nonreciprocity function. Inter-

actions between particles of similar species are entirely reciprocal
(Fi j = FC

i j), while interspecies interactions exhibit both recipro-
cal FR

i j = FC
i j and nonreciprocal FNR

i j = ±Δ × FC
i j contributions, with

Fi j = FR
i j + FNR

i j . Consider ij ∈ LG: The sum of this pair interac-
tion will result in a net force (violating Newton’s third law), with
Fi j + F ji = 2FNR

i j = 2ΔFC
i j . This resulting net force FNR

net = 2FNR
i j [see

Fig. 1(a)] may be thought of as an internally generated active
force that entirely depends on particle configurations and the
nonreciprocity function Δ(r). For simplicity, we consider a step
nonreciprocity function Δ(r) = ΔΘ(r − drec) such that interactions
between particles are entirely reciprocal for separation distances less
than a reciprocity diameter, drec, and have a constant degree of non-
reciprocity Δ for distances greater than drec. This model now allows
us to continuously depart from the equilibrium limit (Δ = 0) and
isolate the precise role of the violation of interaction reciprocity
on a system’s phase diagram. In this sense, this model represents a
minimal system, in which detailed balance is broken on a two-body
level, joining a family of simple models in which detailed-balance is
broken with a single parameter.24,37–39

Figure 1(a) illustrates the qualitatively distinct interaction
regimes controlled by Δ. Departures from Δ = 0 break interaction
reciprocity, resulting in forces that are no longer conservative and
a nonequilibrium distribution of microstates. For 0 < Δ < 1, while
the magnitude of the force is different for each species, the forces
continue to oppose each other: repulsive (attractive) interactions
will continue to be repulsive (attractive). However, for Δ > 1, the
nonreciprocity results in forces that no longer oppose each other:
a particle exerting a repulsive (attractive) force will itself experience
an attractive (repulsive) force [see Fig. 1(a)]. This is the so-called
“predator–prey” interaction that appears in nature. While this might
lead one to conclude that Δ = 1 is a significant dynamical point

from the individual particle perspective, from the standpoint of
the particle pair, this point is not unique. The net nonreciprocal
force between the particle pair [see Fig. 1(a)] linearly grows with
increasing Δ: there is nothing to distinguish Δ = 1.

Our aim is to identify how nonreciprocity shapes the struc-
tural and dynamical landscape of a simple model system. To this
end, we take our conservative force FC to result from Lennard-
Jones (LJ) interactions (with a cutoff distance of 2.5σ), introducing
the LJ energy (ε) and length (σ) scales. The reciprocal diameter
is set to drec = 21/6σ such that all particle pairs experience strictly
reciprocal repulsion within separation distances of drec. The result-
ing pair interaction forces are shown in Fig. 5 in the Appendix.
The particle dynamics follow the overdamped Langevin equation
(see the Appendix), which imparts an ideal translational diffu-
sivity DT = kBT/ζ (introducing our system timescale τ = σ2/DT),
where kBT is the thermal energy and ζ is the translational drag
coefficient. Our system state is, thus, fully described by four para-
meters: the degree of nonreciprocity Δ, the global volume fraction
ϕ = (ρL + ρG)π(drec)3/6 (where ρL and ρG are the number den-
sities of species L and G, respectively), the global composition
χ = ρG/(ρL + ρG), and the ratio of the interaction energy to the ther-
mal energy ε/kBT. In this work, we fix χ = 0.5 and ε/kBT = 2.0, and
systematically sweep ϕ and Δ. All simulations were conducted with
50 000 particles using HOOMD-blue.40

PHASE DIAGRAM

Figure 1(b) displays the phase diagram obtained from exten-
sive computer simulations. For finite nonreciprocity, the system is
out of equilibrium, and, while there has been recent progress in the
sampling of driven systems,41–49 we address questions of global sta-
bility by conducting a number of long-time simulations with distinct
initial configurations, as detailed in the supplementary material.

STATIONARY PHASE TRANSITIONS

In the reciprocal limit Δ = 0, there is no distinction between L
and G particles. The stationary state corresponds to that of a single-
component attractive Lennard-Jones system at ε/kBT = 2.0. While it
has been established50 that the thermodynamic ground state for this
system is crystal (fcc)–fluid coexistence, observing this state requires
an exceedingly rare fluctuation, to generate the critical nuclei nec-
essary for crystal growth. A long-lived (metastable) liquid–gas coex-
istence is, instead, observed for all densities examined in this work
with Δ = 0.

Small departures from the reciprocal limit (0 < Δ ≤ 0.15) con-
tinue to result in liquid–gas coexistence with similar (slightly
reduced) coexisting densities [see Fig. 2(a)]. However, a compo-
sition asymmetry between the phases is now generated, as shown
in Fig. 2(b). For small Δ, it may be permissible to assume that
the system remains in a local equilibrium with modified inter-
action potentials between particle pairs. However, a composition
distinction between phases in a symmetric mixture would require
difference in the modified LL and GG interaction energies. As nonre-
ciprocity leaves interactions between like species unaltered, systems
with weak nonreciprocal forces cannot be mapped to equilibrium
with modified interaction energies.
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FIG. 1. (a) Schematic of pairwise nonreciprocal interactions between species L and G. (b) Phase diagram in the density–nonreciprocity plane with ε/kBT = 2.0 and χ = 0.5,
with ϕ ∈ [0.005, 0.5], Δ ∈ [0, 1.5]. (c) Representative snapshots of each of the seven distinct regions of the phase diagram.

An alternative intriguing possibility exists for this weak species
segregation, in which, for small Δ, rather than mapping the system
to an equilibrium system with modified interactions, we consider
the effective temperatures of each species to slightly deviate from
the bath temperature and with (TL ≠ TG). The statistical mechan-
ics of systems with particles in contact with different heat baths

is considerably simpler than a full treatment of nonreciprocity. In
fact, this perspective was found to hold exactly in the limit of small
nonreciprocity for certain model systems.27 However, its general
applicability to nonreciprocal systems remains to be determined.

In scenarios with species of different temperatures, particles
with a higher effective temperature are entropically driven to enrich

FIG. 2. Nonreciprocity dependence of
coexisting (a) densities and (b) composi-
tions for states of two-phase coexistence
with ϕ = 0.0875.
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the dilute phase.51 Our simulation results (Fig. 2) show that parti-
cles of species L are biased toward the gaseous phases, suggesting
TL > TG if this perspective holds. However, there is little evidence
to suggest that TL > TG, as the self- diffusion of G is always greater
than that of L [see Fig. 3(b)]. Attempting to define the effective
temperature with a Stokes–Einstein relation (i.e., kBTL/G = Dself

L/Gζeff,
where ζeff is an effective translational drag coefficient, assumed to
be identical for each species) would lead to the interpretation that
TG > TL(> T). We, thus, conclude that even for the small values
of nonreciprocity examined here, effective equilibrium and effective
temperature ideas are not sufficient to describe the observed phase
behavior.

Increasing the nonreciprocity beyond Δ > 0.15 results in a mul-
titude of states, depending on the overall volume fraction. For a
broad range of intermediate densities (0.15 < ϕ < 0.35), the system
is globally homogeneous (i.e., there is no phase separation). This
broad region of intermediate densities at which no phase transitions
occur (0.15 < ϕ < 0.35) is not the only region of homogeneity. For
Δ ≥ 0.2, we, indeed, find the system to be homogeneous at the lowest
concentration (ϕ = 0.005) shown in the phase diagram presented in
Fig. 1(b), while systems with Δ < 0.2 are phase separated. It is inter-
esting that even at these low concentrations, the system state remains
Δ dependent. In the low density limit, as ϕ→ 0, this Δ dependence
must vanish, as interactions become negligible and the system is
indistinguishable from an ideal gas with temperature kBT.

In this broad region of homogeneity at intermediate densities,
the system consists of clusters of finite spatial extent. Each cluster
is typically enriched in either L or G, and as a result, the system
appears to be microphase separated, particularly at smaller values
of Δ [cf., Fig. 1(c)]. We characterize the extent of species segrega-
tion by computing the partial static structure factors provided in the
supplementary material. The correlation lengths for density fluctua-
tions of species L and G, ξL and ξG, respectively, are extracted from
the structure factor and shown in Fig. 3(a). With increasing Δ, we
find a monotonic reduction in these correlation lengths: increasing

nonreciprocity homogenizes the system at these densities. We note
that the divergence of both ξL and ξG as Δ→ 0.2 is anticipated, as the
phase-separated regime is approached in this limit.

What is more, the dramatic alteration to the system’s struc-
tural properties is accompanied by a commensurate change in the
species’ self-diffusivity [see Fig. 3(b)]. The diffusion constant in
the absence of any interactions is the ideal Stokes–Einstein trans-
lational diffusivity, DT = kBT/ζ, imparted on the particles by the
Langevin bath. In the case of passive systems with purely recipro-
cal interactions, DT serves as an upper bound for the self-diffusion
constant, with Dself ≤ DT . Furthermore, if a Stokes–Einstein relation
holds, Dself = kBT/ζeff, where ζeff ≥ ζ. Upon increasing Δ, the self-
diffusivities of both species increase significantly and even exceed the
ideal diffusivity for Δ ≳ 0.6.

We can determine the precise origins of this enhanced diffusion
using the Green–Kubo relation for self-diffusion52 and leveraging
the substitution of forces for velocities permitted by overdamped
dynamics. Composition fluctuations about a tagged particle [see
Fig. 3(c)] generate instantaneous nonreciprocal forces that act to
increase the diffusivity (similar to a one-body active force), and the
system resembles an active fluid. However, this contribution is found
to be relatively independent of Δ, as detailed in the supplementary
material. The origin of the dramatic increase in particle diffusiv-
ity with Δ is, in fact, found to be the result of the diminishing
magnitude of a number of force correlations that reduce particle
mobility. Increased nonreciprocal forcing induces profound struc-
tural changes that have a clear dynamical consequence: the breakup
of segregated microphases reduces the effective particle friction.
The diminished friction with increasing Δ, coupled with the direct
contribution of nonreciprocal forcing to particle diffusion, is what
allows the system to exceed the ideal diffusion.

At volume fractions between regions of global homogene-
ity [i.e., 0.005 < ϕ ≤ 0.15], nonreciprocity introduces a variety of
possible stationary states. Appreciable values of nonreciprocity
(0.2 ≤ Δ ≤ 0.55) results in a state of three-phase coexistence, as

FIG. 3. Nonreciprocity dependence of
the (a) correlation lengths [normalized
by the ideal gas value ξ0 (see the
Appendix)] and (b) self-diffusivities for
ϕ = 0.2 and Δ ≥ 0.3. Shaded regions
highlight the active fluid regime (Dself

>

DT). (c) Fluctuations of the local com-
position environment of a tagged particle
control nonreciprocal forcing.
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shown in Fig. 1(b). The three coexisting fluids consist of two high-
density, spherical liquid phases,53 each nearly pure in species L or G,
and a dilute phase with a relatively equal amount of each species.
In contrast to nonreciprocal two-phase coexistence, the observed
densities and compositions may more readily be mapped to an
equilibrium analog. In equilibrium, reducing the magnitude of inter-
species attraction, i.e., εLG < ε, can generate a state of three-phase
coexistence, not dissimilar to what we observe here, as detailed in
the supplementary material.

Further increasing Δ will result in a return to two-fluid coex-
istence, with densities similar to those seen at low nonreciprocity
[see Fig. 2(a)]. However, unlike lower values of nonreciprocity, there
is a sharp composition contrast between the coexisting fluids, as
shown in Fig. 2(b). Intriguingly, the dense fluid [again, adopting a
spherical morphology, see Fig. 1(c)] is nearly entirely comprised of
species G. Preparing a system seeded with a liquid droplet, purely
of species L, in this two-phase region of the phase diagram again
results in the nucleation and growth of a liquid G droplet—dense
liquids of G appear to be the preferred state. In single- component,
nonequilibrium systems, interfacial mechanics uniquely determine
the coexisting densities.37,54 While this remains to be generalized to
multicomponent systems, the interfacial nonreciprocal forces result
in a pure G liquid phase coexisting with a dilute mixture as the
mechanically stable state of coexistence.

With increasing nonreciprocity, this region of two-phase coex-
istence, with strong species segregation, is found to narrow, while
the stable homogeneous region of the phase diagram expands [see
Fig. 1(b)]. At the highest value of nonreciprocity reported here, the
phase diagram has four distinct regions. Beginning at the lowest den-
sity, with increasing ϕ, we move from the homogeneous “ideal gas”
regime to a two-fluid coexistence, followed by a broad regime of
homogeneity. Further increasing the density beyond ϕ ≥ 0.35 results
in a traveling state—a dynamical transition that we now discuss.

TRAVELING STATES

At high ϕ, performing the long-time average results in den-
sity and composition profiles that resemble traditional states of
two-phase coexistence. Intriguingly, at these high concentrations
and with increasing nonreciprocity, the dense phase undergoes an
ordering transition, with the emergence of an fcc crystal, quantified

with the Steinhardt–Nelson–Ronchetti order parameter, measur-
ing 12-fold rotational symmetry, q12 (see the Appendix).55 Typi-
cal density and q12 profiles are shown in Fig. 4(a), with z being
the direction normal to the interface. Did the mobility imparted
by nonreciprocal forces allow the system to surmount the nucle-
ation barrier or is nonreciprocity itself driving this ordering tran-
sition? We leave interrogating these questions for a future study,
but recent work on active order–disorder transitions56 suggests
that nonequilibrium forcing can entirely reshape the crystallization
landscape.

While the long-time averages of these states appear consistent
with a stationary two-phase coexistence scenario, careful examina-
tion of the low-density region reveals a kink in its density profile,
suggesting that this is not a typical state of coexistence between
two homogeneous phases. Indeed, observing the system dynamics
reveals the emergence of a traveling state, defined by ballistic center-
of-mass motion [see Fig. 1(c) and the supplementary material]. This
density gradient generates an asymmetry that drives a persistent
center-of-mass velocity: the coexisting domains appear to chase each
other.

These traveling states occur for both liquid–gas and
crystal–fluid coexistence, depending on the degree of nonre-
ciprocity [see Fig. 1(b)]. Over a time period τts, the direction of the
low-density phases’ density gradient reverses, and with it, so too
does the center-of-mass velocity vcom. These dynamics are well-
described by a simple oscillatory form vcom(t) = vts sin(2πt/τts).
Figure 4(b) reveals that while the velocity increases nearly linearly
with nonreciprocity, there is a marked decrease in the period.57

That the velocity scales nearly linearly with Δ is perhaps indicative
that the traveling speed simply scales with the magnitude of the
nonreciprocal forcing, while the oscillation period is dictated
by the timescale for the reorganization of the density gradient.
The enhanced mobility with increasing Δ [cf., Fig. 3(b)] likely
drives the marked reduction in the gradient reorganization
time, generating the observed rapid oscillation frequency at high
nonreciprocity.

The density gradient, which drives the traveling state, is also
accompanied by a composition gradient: the velocity direction
is normal to the interface enriched in G [see Fig. 1(c) and the
supplementary material, movies]. These traveling states thus appear
to be a version of the “predator–prey” interaction, with the G
enriched regions chasing the G depleted domains. It is important to

FIG. 4. Traveling crystal (a) long time-
averaged ϕ and q12 profiles (averaging
time≫ τts) with (Δ = 1.5, ϕ = 0.5) and
(b) Δ dependence of the traveling state
dynamics for ϕ = 0.5.
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note that traveling states do not require nonreciprocal interactions.
Mixtures of active and passive particles,58–61 interacting with purely
reciprocal interactions, can also exhibit such states.29,34,59,60

What determines the onset of these dynamical states is the
mutual diffusion coefficient tensor Dαβ, the elements of which
describe how a diffusive flux of species α emerges from a density
gradient in species β.62 Linear stability analysis using the species
mass conservation equations results in stability criteria purely in
terms of the eigenvalues of Dαβ. The traveling phases may emerge
when the eigenvalues have imaginary components.29,30,32,34,60 Con-
structing the stability diagram for this system will thus require
a model for the diffusion tensor. The mutual diffusion coeffi-
cients have been analytically computed for some active–passive
mixtures,60 beginning from the evolution equation for the distri-
bution of microscopic configurations for those systems. A general
microscopic expression for the mutual diffusion tensor for mix-
tures with nonreciprocal interactions is the subject of ongoing
work, as it will be necessary for the prediction of traveling states
from first principles. While Dαβ is crucial for determining sta-
bility criteria, predicting the properties of the stable states (e.g.,
the density and composition of phases) will require additional
considerations.

CONCLUSIONS

Nonreciprocity is a generic feature of living and natural systems
and is increasingly used as a means to alter the structure and dynam-
ics of synthetic materials across a multitude of length scales. Recent
works have sought to generalize statistical mechanics and the theory
of dynamical systems to account for nonreciprocity,27–32,34 however
the theory for multicomponent nonequilibrium coexistence remains
an outstanding challenge. Here, we have presented a minimal model
that illustrates the versatility of nonreciprocity as an added dimen-
sion to a system’s phase diagram and found that it generates a wealth
of stationary and dynamical phase transitions. This added dimen-
sion to the phase diagram allows a simple two-component system
to access states of three-fluid coexistence, liquid-liquid phase sepa-
ration with strong species segregation, and traveling crystal phases.
The minimal system presented here may thus serve as an ideal model
for the development of the nonequilibrium statistical mechanics of
mixtures.

SUPPLEMENTARY MATERIAL

See the supplementary material, which includes Refs. 51, 52,
and 63–65, for additional simulation and calculation details, as well
as simulation movies.
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APPENDIX: SIMULATION AND CALCULATION DETAILS

The interaction reciprocity in our simulations is adjusted with
a single scalar parameter, Δ. All interactions within the reciprocity
diameter drec = 21/6σ are reciprocal, and are generally nonreciprocal
for interparticle separations greater than drec for interspecies pairs.
Figure 5 plots the pairwise forces resulting from our choice of the
reciprocity diameter and the use of a Lennard-Jones potential. The
sign convention is chosen such that positive forces are repulsive and
negative forces are attractive. The emergence of nonreciprocity is
evident with increasing Δ.

Particle dynamics are taken to follow the overdamped Langevin
equation

ẋi =
1
ζ∑i≠ j

Fi j(r; t) + vs
i(t), (A1)

where ẋi is the velocity of the ith particle, vs
i(t) is a stochastic

velocity with a mean of ⟨vs
i(t)⟩ = 0 and variance of ⟨vs

i(t)vs
j(t′)⟩

= 2DTδi jδ(t − t′)I, DT is the translational diffusion coefficient
(defining the thermal energy scale kBT = ζDT), δ(t − t′) is the Dirac
delta function, and I is the identity tensor. These conservative forces
are cut off at 2.5σ, capturing the attractive portion of the LJ poten-
tial, and we set drec = 21/6σ such that all particle pairs experience
reciprocal repulsion within separation distances of drec. All points
sampled in the phase diagram are initialized with random initial
conditions generated with Packmol63 and are run for a duration of
5000τ. Points close to the phase boundary are examined with dif-
ferent initial conditions to assess global stability, as detailed in the
supplementary material.

Periodic boundary conditions are employed in all directions,
and rectangular box geometries are used to orient the interface of
coexisting domains. The relative box dimensions for all simulations
have a ratio 1:1:3. In the case of traveling states that consist of spatial
gradients over large length scales, we conduct additional simulations
with relative box dimensions 1:1:10. This elongated geometry better
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FIG. 5. Δ dependence of the pair interaction force acting on (a) a particle of species L by a particle of species G and (b) a particle of species G by a particle of species L.

allows for visualization and characterization of the spatial gradients
present in the traveling states.

The correlation lengths presented in Fig. 3(a) are taken to be
the inverse of the first moment of the static structure factor

ξα = ∫
k∗

kmin
Sαα(k)dk

∫ k∗

kmin
kSαα(k)dk

, (A2)

where k∗ is the magnitude of the wave vector corresponding to the
reciprocity diameter and kmin corresponds to the largest possible
wavelength, set by the simulation box size. The partial static struc-
ture factors Sαβ are computed with the Fourier transform of particle
coordination for species α and β. We focus on intraspecies density
correlations (i.e., α = β) with Sαα, taking the following form:

Sαα(k) =
1

Nα
⟨
RRRRRRRRRRR

Nα

∑
j=1

exp (ik ⋅ x j)
RRRRRRRRRRR

2

⟩, (A3)

where Nα is the total number of particles of species α. For the
isotropic systems considered here, Sαα(k) depends only on the mag-
nitude of the wave vector k = ∣k∣. Species correlation is normalized by

ξ0 = ∫
k∗

kmin
Sideal(k)dk

∫ k∗
kmin

kSideal(k)dk
, where Sideal(k) = 1 is the ideal gas static structure

factor.
The Steinhardt–Nelson–Ronchetti order parameter q12 com-

puted in Fig. 4(a) is defined as

ql(i) = (
4π

2l + 1

l

∑
m=−l
∣⟨qlm⟩∣2)

1/2

, (A4)

where qlm is the average spherical harmonics of the bond angles
formed between particle i and its nearest neighbors.55 By taking
l = 12, we can quantify the presence of twelve-fold rotational sym-
metry in the local structure around a tagged particle, with q12 ≈ 0.6

corresponding to a perfect fcc arrangement and q12 ≈ 0.3 for a disor-
dered fluid. We use q12 to distinguish between traveling liquid–gas
and traveling crystal–gas scenarios.
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