
J. Chem. Phys. 158, 074904 (2023); https://doi.org/10.1063/5.0138256 158, 074904

© 2023 Author(s).

Tuning nonequilibrium phase transitions
with inertia
Cite as: J. Chem. Phys. 158, 074904 (2023); https://doi.org/10.1063/5.0138256
Submitted: 09 December 2022 • Accepted: 30 January 2023 • Accepted Manuscript Online: 30
January 2023 • Published Online: 17 February 2023

 Ahmad K. Omar,  Katherine Klymko,  Trevor GrandPre, et al.

ARTICLES YOU MAY BE INTERESTED IN

Work statistics in slow thermodynamic processes
The Journal of Chemical Physics 158, 074104 (2023); https://doi.org/10.1063/5.0138405

Dynamics of chemical reactions on single nanocatalysts with heterogeneous active sites
The Journal of Chemical Physics 158, 074101 (2023); https://doi.org/10.1063/5.0137751

Phase diagrams—Why they matter and how to predict them
The Journal of Chemical Physics 158, 030902 (2023); https://doi.org/10.1063/5.0131028

https://images.scitation.org/redirect.spark?MID=176720&plid=2018879&setID=378408&channelID=0&CID=739312&banID=520939383&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b2503c13e69d1a1f79e909472d2c45814d1260ec&location=
https://doi.org/10.1063/5.0138256
https://doi.org/10.1063/5.0138256
https://orcid.org/0000-0002-6404-7612
https://aip.scitation.org/author/Omar%2C+Ahmad+K
https://orcid.org/0000-0002-4158-5776
https://aip.scitation.org/author/Klymko%2C+Katherine
https://orcid.org/0000-0002-3565-6873
https://aip.scitation.org/author/GrandPre%2C+Trevor
https://doi.org/10.1063/5.0138256
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0138256
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0138256&domain=aip.scitation.org&date_stamp=2023-02-17
https://aip.scitation.org/doi/10.1063/5.0138405
https://doi.org/10.1063/5.0138405
https://aip.scitation.org/doi/10.1063/5.0137751
https://doi.org/10.1063/5.0137751
https://aip.scitation.org/doi/10.1063/5.0131028
https://doi.org/10.1063/5.0131028


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Tuning nonequilibrium phase transitions
with inertia

Cite as: J. Chem. Phys. 158, 074904 (2023); doi: 10.1063/5.0138256
Submitted: 9 December 2022 • Accepted: 30 January 2023 •
Published Online: 17 February 2023

Ahmad K. Omar,1 ,2,a) Katherine Klymko,3 ,4,b) Trevor GrandPre,5 Phillip L. Geissler,6 ,7

and John F. Brady8

AFFILIATIONS
1 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5Department of Physics, University of California, Berkeley, California 94720, USA
6Department of Chemistry, University of California, Berkeley, California 94720, USA
7Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
8Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

a)Author to whom correspondence should be addressed: aomar@berkeley.edu
b)kklymko@lbl.gov

ABSTRACT
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven
systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation–dissipation
theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active
Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent
external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be
complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be
understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective tem-
perature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle
introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into
the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138256

INTRODUCTION

Particle dynamics that break time-reversal symmetry result
in a non-Boltzmann distribution of microstates, leading to phase
transitions and pattern formation that defy equilibrium intuition.
Self-propelled particles can phase separate in the absence of cohesive
interactions, a phenomenon commonly referred to as motility-
induced phase separation (MIPS).1–4 Externally manipulating the
trajectories of particles (e.g., with magnetic or electric fields) can
result in microphases and pattern formation5–10 despite purely
repulsive, simple interaction potentials. While the observation of

these and numerous other nonequilibrium phase transitions in
natural and synthetic systems is now routine, the theoretical descrip-
tion of these transitions is clouded by the absence of a priori
knowledge of the distribution of microstates.

Understanding the many-body phase behavior of driven sys-
tems remains a principal challenge in nonequilibrium statistical
mechanics. However, it has become clear that some nonequilib-
rium systems may admit an effective Boltzmann distribution of
states, a feature that radically improves our ability to understand
these systems.11 Athermal granular materials have been described
by the Edwards ensemble, which, in simple terms, is a statistical
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mechanical framework based on the assertion that states with equal
volume (rather than energy) have equal probability.12,13 The fluctu-
ations of boundary-driven arrested materials have also been posited
to be controlled by an effective temperature (albeit, not uniquely
defined).14,15

In the case of active or locally driven matter—where the break-
ing of time-reversal symmetry is due to a particle-level driving
force—effective equilibrium states have been invoked to explain
emergent structural features and phase transitions with varying
degrees of success.8,16–23 In these scenarios, energy scales born from
the active dynamics (which can be defined using, e.g., linear response
theory or invoking Stokes–Einstein relations) play the role of an
effective temperature that is then used to map these driven systems
onto an equilibrium analog.24–33 However, assessing the success of
effective temperature ideas to describe nonequilibrium steady states
remains largely empirical. Recent work by O’Bryne and Tailleur
demonstrated that the dynamics of tactic active matter can be rig-
orously mapped to effective passive systems at a hydrodynamic
level.34,35 On a microscopic level, active forces under certain lim-
its can act as traditional thermal forces by satisfying an effective
fluctuation–dissipation theorem (FDT).36,37 However, the general
question remains: When can nonequilibrium systems be rigorously
mapped to effective equilibrium states?

In this article, we explore the question raised above in the con-
text of active systems. Despite the presence of active forces that
strictly violate the FDT on a microscopic level, we demonstrate a new
limit in which nominally nonequilibrium systems can be pushed
to effective equilibrium states simply by increasing inertia. This
limit occurs when the translational momentum relaxation time τM
is much larger than the intrinsic timescale associated with trans-
lational active forces τA as measured through the Stokes number
St ≡ τM/τA. When St→∞, active forces behave as thermal
forces with the kinetic temperature playing the role of a now
density-dependent effective temperature. We show that a variety
of nonequilibrium transitions observed in the overdamped limit
are attenuated with increasing inertia while equilibrium-like tran-
sitions are restored. Our results offer a new interpretation for the
reported39–43 dependency of nonequilibrium phase transitions on
translational inertia and further insight into the applicability of the
effective temperature perspective.

MANY-BODY PHASE BEHAVIOR

While the impact of inertia on active dynamics has been
recently investigated,39,41–56 a generalized understanding of its
impact on active phase behavior has remained elusive. Before pro-
ceeding to demonstrate the impact of inertia on the many-body
phase behavior of driven systems, we briefly discuss the model
systems and their known equilibrium limit. We consider the micro-
scopic distribution of the positions xN of N particles each with mass
m and each experiencing conservative interparticle/external forces
FC = Fint + Fext = −∇V(xN) (where V is the potential) and two non-
conservative forces: a drag force Fdrag that dissipates the particle’s
energy and a fluctuating source force Fsource that injects energy into
the system. The FDT establishes the relationship between the fluc-
tuating and dissipative forces that is required to rigorously recover a
Boltzmann distribution of microstatesP(xN)∝ exp[−V(xN)/kBT],

where kBT is the energy scale associated with the source. Taking the
drag coefficient of each particle to be independent, memoryless, and
constant (i.e., Fdrag = −ζu, where ζ is the drag coefficient and u is
the particle velocity), the FDT constrains the source force to have a
mean of 0 and a variance of ⟨Fsource(t)Fsource(t′)⟩ = 2kBTζδ(t − t′)I.

Nonequilibrium forces can satisfy the FDT in certain lim-
its, making the notion of an effective temperature exact under
these conditions. For instance, for active Brownian particles (ABPs),
the source of fluctuations is Fsource = Fact = ζU0q, where U0 is the
intrinsic active speed and q is the particle orientation. Taking the
dynamics of q to be diffusive and overdamped with rotary diffu-
sion constant DR, the particles move persistently for a characteris-
tic timescale τR = D−1

R . Rotational inertia can profoundly alter the
dynamics of ABPs (see the recent work of Sandoval49); however,
we neglect such effects here to simplify our analysis and isolate
the role of translational inertia on systems with translational active
forces. While generally not satisfying the FDT, Fact does so in the
limit that τR → 0 (i.e., ⟨Fact(t)Fact(t′)⟩ = 2kBTeffζδ(t − t′)I) with an
effective temperature of kBTeff = ζDact where Dact = U2

0 τR
d(d−1) is the

intrinsic active diffusion constant in d spatial dimensions.37,38 This is
often the limit explored in experiments that have observed effective
Boltzmann distributions in active systems.25,31

Short of this limit, with the microscopic dynamics in strict vio-
lation of the FDT, we now demonstrate the implications of inertia
on the phase behavior of active systems. We conduct simulations57,58

(see the supplementary material for details) of effective hard-sphere
ABPs in three dimensions (3D), the phase behavior of which has
been recently established.23,38 In the overdamped hard-sphere limit,
the phase diagram is characterized by two geometric parameters: the
ratio of the run length ℓ0 ≡ U0τR to particle diameter σ and the vol-
ume fraction ϕ. Here, the system undergoes MIPS for a broad range
of ℓ0/σ and ϕ.38 The addition of translational inertia adds a third
dimensionless axis to the phase diagram, quantified by St ≡ τM/τA
≡ (m/ζ)/τR. Selecting a state well within the regime of MIPS such
that the liquid and gas densities are appreciably distinct, we observe
[see Fig. 1(a)] a rapid and monotonic elimination of coexistence with
increasing St and the absence of MIPS entirely when St > 0.03.

The sensitivity of MIPS to inertia in 2D was first reported by
Mandal et al.39 who demonstrated that, for all values of ℓ0/σ and for
high enough St, a homogeneous state was observed in lieu of MIPS.
As we later argue, the absence of MIPS with increasing inertia is
rooted in the system reaching an effective equilibrium state. If this
is indeed the case, we should additionally observe the restoration
of equilibrium transitions. In the case of our hard-sphere system,
Boltzmann statistics would result in the equilibrium freezing tran-
sition with coexisting fluid and solid densities59,60 of ϕfluid = 0.494
and ϕsolid = 0.545. Importantly, equilibrium freezing is athermal in
origin and thus does not depend on the precise value of kBTeff.

In the overdamped limit, activity dramatically shifts the freez-
ing transition toward higher densities38 with the solid phase exhibit-
ing a nearly close-packed density (ϕsolid → 0.74) for activities as
small as ℓ0/σ = 5.0 [see St = 0 in Fig. 1(b)]. In the limit of small
run lengths ℓ0/σ → 0 where the FDT is satisfied, it was recently
shown that, despite the use of a continuous potential, athermal
active particles display a freezing transition that closely resembles
that of equilibrium hard spheres.38 Departing from the overdamped
limit, we observe a shift in the crystal coexistence region to lower
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FIG. 1. Inertia dependence of (a) MIPS (ℓ0/σ = 50.0) and (b) crystallization (ℓ0/σ = 5.0) of active Brownian spheres (see Ref. 38 for St = 0 phase diagram) and
(c) pattern formation in a 50 : 50 mixture (with number density ρσ2

= 0.45) of oscillating (U0σ/DB
= 70, ℓ0/σ ≡ U0/ω = 1.67) and passive soft disks (see Ref. 9 for St = 0

phase diagram). Dashed lines denote equilibrium expectations.

densities [see Fig. 1(b)], consistent with our expectations of a return
to an effective equilibrium. We note that the crystallization transi-
tion appears to be much less sensitive to inertia than MIPS, with the
coexistence window continuing to shift to lower densities for St > 1.
For St > 5, the densities (particularly that of the fluid) appear to sat-
urate at values that, while significantly closer, are decidedly distinct
from the expected values of equilibrium freezing. The source of this
discrepancy is possibly rooted in the nonequilibrium origins of the
effective temperature, which we later show manifest in its density
dependence.

Thus far, increasing inertia has monotonically pushed the phase
behavior of active systems to more closely resemble effective equi-
librium systems. However, it should be emphasized that reaching
the effective equilibrium appears to occur in the asymptotic limit
of high inertia. Intermediate values of inertia can also heighten the
nonequilibrium features observed in overdamped phase transitions.
2D systems of repulsive active–passive mixtures are known to form
microphases when the source of activity is an oscillatory deter-
ministic force [Fact = ζU0q with q(t) = sin(ωt)êx + cos(ωt)êy].8,9

Here, all particles experience Brownian forces FB (resulting in
a translational diffusivity DB ≡ kBT/ζ) that do satisfy the FDT

(i.e., Fsource = FB and Fsource = Fact + FB for the passive and active
particles, respectively). By introducing translational inertia with
St ≡ τM/τA ≡ (m/ζ)ω, we observe [see Fig. 1(c)] an enhancement in
the average size ⟨L⟩ of the microdomains (and interfacial smooth-
ness) with increasing inertia before eventually reaching the effective
equilibrium limit. That there exists an optimum St for accentuat-
ing nonequilibrium transitions makes clear the path toward effective
equilibrium can be complex.

THEORY AND DISCUSSION

We now explore the origins of the apparent return to equi-
librium phase behavior of active systems with increasing inertia.
Before proceeding to interacting systems, it is instructive to consider
the distribution of ideal ABPs (Fint = 0), which in addition to the
active force, also experience translational Brownian forces FB. These
dynamics result in a Fokker–Planck equation for the probability
density P(x, u, q, t),61

∂P
∂t
= −∇x ⋅ jx −∇u ⋅ ju −∇q ⋅ jq, (1)
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where jψ and∇ψ are the flux of probability and gradient operator in
ψ-space, respectively (see the supplementary material).

By taking statistical moments (see the supplementary material)
of Eq. (1) in both u and q, one finds that the steady-state number
density field ρ(x) = ∫ P du dq of ideal ABPs satisfies mass conser-
vation∇x ⋅ jρ = 0, where the density flux jρ can be determined from
linear momentum conservation,

∇x ⋅ σ
®

particle
stress

+ ζU0m
²

active body
force

+ ρFext

±
external

body force

− ζjρ
¯

drag body
force

= 0, (2)

where m(x) = ∫ P q du dq is the polarization density of the par-
ticles. For ideal ABPs, the stress is simply the kinetic stress
σ = σK = −ρm⟨uu⟩. The nonconservative and external forces act as
body forces—sources or sinks of momentum that can generate stress
gradients in a system. The active body force62–66 injects momen-
tum into the system through the polarization field, which, at steady
state, satisfies m = − τR

d−1∇x ⋅ jm. An active (or “swim”) stress67–71 is
often defined σact = − ζU0τR

d−1 jm = − ζU0τR
d−1 ρ⟨uq⟩ ∼ τRρ⟨uFact⟩, allowing

Eq. (2) to be expressed as ∇x ⋅ (σ + σact) + ρFext − ζjρ = 0.65 While
derived here for ideal systems, Eq. (2) is also general to interacting
ABPs,64,72 which generate an additional stress σint = −ρ⟨xFint⟩.

We can now approximate the steady-state distribution of ideal
ABPs as a function of St ≡ (m/ζ)/τR. In the presence of an infi-
nite planar hard (no flux) wall at z = 0 with a bulk density of ρ∞ as
z →∞, ideal passive systems would recover a uniform density field
ρ(z) = ρ∞, consistent with Boltzmann statistics. In contrast, over-
damped ABPs strongly accumulate on no-flux boundaries despite
the absence of an energetic driving force for wetting the surface.62

Continuing to take statistical moments of P(x, u, q) and closing at
the nematic level (see the supplementary material for a complete
derivation), for d = 2 we find a density profile of

ρ(z) = ρ∞(1 + Dact

DB(1 + St)
exp[−zλ]) (3)

and a polarization density of

mz(z) = −
αλDB

U0

ρ∞Dact

β(DB +Dact) −Dact exp[−zλ], (4)

where λ is the inertia-dependent inverse screening length,

λ2 = (d − 1)β(1 +Dact/DB)
(αγδ2)

,

where δ =
√
τRDB is a microscopic length and we have defined the

following dimensionless variables:

α = 1 + Dact

DB (
St

1 + St
),

β = 1 + (d − 1)St,

γ = 1
1 + St

(1 + Dact

DB
(d − 1)St

2
).

For St = 0, our results exactly capture the overdamped limit62

while for increasing St we observe a reduction in the degree of accu-
mulation [see Fig. 2(a)] that is consistent with simulation. These
trends continue until achieving a uniform distribution of particles
as St→∞, consistent with equilibrium expectations.

The origins of this apparent effective equilibrium can be under-
stood in the context of linear momentum conservation, which
governs the dynamics of the density field. With increasing St,
the decorrelation of active force and particle velocity diminishes
the active stress σact ∼ ⟨uFact⟩ while the kinetic stress grows and
increasingly resembles that of a passive system (i.e., σK → −ρkBTeffI
as St→∞, see the supplementary material). As a result, the
steady-state momentum balance Eq. (2) becomes indistinguishable

FIG. 2. Simulation (symbols) and theoretical (lines) results of (a) ρ and (b) mz [Eq. (4)] for ideal ABPs with Dact
/DB
= 5.0 near a no-flux boundary.
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from that of a passive system, resulting in a Boltzmann distri-
bution with an effective temperature given by the kinetic tem-
perature kBTeff ≡ m⟨u ⋅ u⟩/d = ζ(DB +Dact) (see the supplementary
material).

This exchange of active stress for kinetic stress (and the indis-
tinguishably of the kinetic stress to that of a passive system) with
increasing inertia, in essence, renders activity as nothing more than
an energy reservoir, much like a thermal bath. This stress exchange
is general to interacting active systems, and it is in fact a conse-
quence of the first law, which takes the form (on a per-particle basis
and using the Stratonovich convention) dH = mu ⋅ du − FC ⋅ dx. At
steady state, the absence of average energy production results in
d
dt ⟨H⟩ = ⟨u ⋅ (mu̇ − FC)⟩ = 0. Using this and our equation of motion
mu̇ = FC + Fsource + Fdrag leads to

⟨−ζu ⋅ u⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dissipation
rate, q̇

+ ⟨u ⋅ Fact⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
active work
rate, ẇ act

= 0, (5)

irrespective of whether FB is included in Fsource. Equation (5)
simply states that the rate of active work production is bal-
anced by the rate of dissipation36,37,73–79 and provides a relation
between velocity–velocity and orientation–velocity correlations with
deep mechanical implications. For homogeneous and isotropic sys-
tems, this can be appreciated by taking the ratio of the kinetic
pressure PK = −tr(σK)/d = ρm⟨u ⋅ u⟩/d to the active pressure
Pact = − tr(σact)/d = τR

d(d−1)ρ⟨u ⋅ F
act⟩, which, using Eq. (5), must

result in PK/Pact = (d − 1)St. Figure 3(a) confirms this result for
interacting ABPs—active stress must be reduced in exchange for
kinetic stress with St.

Two crucial questions remain for interacting active systems: As
St→∞, (i) does the kinetic temperature also play the role of an
effective equilibrium temperature and (ii) does the interaction stress
σint resemble that of passive systems at this temperature? Fig. 3(b)
demonstrates that the kinetic temperature of homogeneous fluids of
active Brownian spheres exhibits strong dependencies on density,
reaching the ideal limit kBTeff → ζDact only as ϕ→ 0 and St→∞.
Upon normalizing the interaction pressure Pint = −tr(σint)/d by

the density-dependent kinetic temperature, we indeed observe a
return to the equilibrium hard-sphere equation of state with increas-
ing St for all ϕ as shown in Fig. 3(c). Such a collapse would not
have been possible if a density-independent energy scale had been
selected and indirectly reflects the elimination of the uniquely active
contributions to σint with St.

Physically, the origin of this equilibrium-like distribution and
distinctly nonequilibrium density-dependent effective temperature
can be understood by considering the various timescales present
in the system. In addition to the momentum relaxation time τM
and active reorientation time τR, there is a timescale associated with
interactions, τint. This timescale could, for example, be the charac-
teristic time between hard-sphere collisions. In the limit St→∞,
τM ≫ τR and the particle orientation—the distinguishing feature of
active matter—ceases to play any dynamical role in the system. How-
ever, if τR > τint, the FDT (which requires τR to be much smaller than
all other timescales) remains unsatisfied. The active force acts as a
source of kinetic energy, but it requires unimpeded particle motion
for a duration of τR to generate a kinetic energy of ζDact. Colli-
sions occurring on timescales faster than the active timescale (i.e.,
τR ≫ τint) thus reduce the kinetic energy generated by the active
force. The increased collision rate with ϕ is precisely why the
effective temperature decreases with concentration.

The dependence of kBTeff on ϕ suggests a coupling between
temperature and local density1,8,80 that distinguishes St→∞ from
a true equilibrium limit. Such a dependence may, in principle, even
generate unique density fluctuations and phase transitions. It is
likely that this coupling alters the crystallization phase boundaries
[cf. Fig. 1(b)] from reaching the known equilibrium values as the
two phases necessarily coexist at different effective temperatures. This
result suggests that while for spatially homogeneous systems, iner-
tial active matter may strongly resemble systems in thermodynamic
equilibrium, situations in which strong density gradients arise (as
in the case of crystallization or the presence of a strong external
potential) will result in departures from equilibrium expectations.
Moreover, it is likely that even in scenarios of spatial homogene-
ity, the density dependence of the effective temperatures alters the
distribution of local density fluctuations from equilibrium expecta-
tions. While this is the subject of future investigation, it is likely that

FIG. 3. Active Brownian spheres with ℓ0/σ = 5.0 and in the homogeneous fluid state. (a) Parametric plot of heat and work production for all ϕ and St examined [see legend
in panel (c)]. Dependence of (b) kBTeff and (c) Pint (normalized by kBTeff) on ϕ and St.
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only the tails of the distribution are appreciably altered as significant
changes to the distribution would likely be reflected in the equation
of state [see Fig. 3(c)].

CONCLUSIONS

Despite strictly violating the FDT, translational active forces
can result in particle distributions that appear to admit effective
equilibrium states in the limit of large translational inertia. We
note that rotational inertia, in the case of ABPs, has been recently
reported to accentuate MIPS by increasing the effective persistence
length of particle trajectories.49,81 We thus emphasize that it is only
in the limit of large translational inertia that active phase transi-
tions caused by translational active forces are mitigated. It would
be interesting to examine the role of rotational inertia in the struc-
tures generated by chiral active matter.82 This limit can be rigorously
understood in the absence of interactions, where the conversion of
nonequilibrium active stress to kinetic stress renders the density dis-
tribution to be Boltzmann with the kinetic temperature serving as an
effective temperature. For the interacting systems we have studied,
this limit eliminates nonequilibrium phase transitions while restor-
ing equilibrium-like transitions. However, a key distinction of this
limit from true equilibrium is the concentration dependence of the
effective temperature, which leads to deviations from the anticipated
equilibrium behavior. While we have focused most of our attention
on athermal systems, it is interesting to consider scenarios in which
active systems are in contact with an equilibrium bath with a tem-
perature of kBT. In the high inertia limit, the temperature of the
particles will be kB(Teff(ϕ) + T). For the systems examined here,
kBTeff(ϕ) is a monotonically decreasing function of density, and it
can thus be expected that in the high density limit, the system will
be truly in equilibrium with a temperature of kBT as T ≫ Teff(ϕ).
Finally, it remains to be seen if, by constructing an equation of
state for kBTeff(ϕ), the familiar tools of thermodynamics may be
used to understand phase transitions of active systems in the large
inertia limit. Such a framework would provide a powerful tool for
understanding and tuning the phase behavior of driven systems. In
the absence of a thermodynamic framework, a recently proposed
mechanical theory of nonequilibrium coexistence may be used to
describe inertial phase behavior.66

SUPPLEMENTARY MATERIAL

See the supplementary material, which includes Refs. 9, 38,
46, 57, 58, 61, 62, 83, and 84, for derivation and discussion of
the distribution of ideal inertial ABPs, simulation and phase dia-
gram construction details, and additional equation-of-state data for
interacting ABPs in 3D.
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