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Microscopic origins of the swim pressure and the anomalous surface tension of active matter
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The unique pressure exerted by active particles—the “swim” pressure—has proven to be a useful quantity in
explaining many of the seemingly confounding behaviors of active particles. However, its use has also resulted in
some puzzling findings including an extremely negative surface tension between phase separated active particles.
Here, we demonstrate that this contradiction stems from the fact that the swim pressure is not a true pressure.
At a boundary or interface, the reduction in particle swimming generates a net active force density—an entirely
self-generated body force. The pressure at the boundary, which was previously identified as the swim pressure,
is in fact an elevated (relative to the bulk) value of the traditional particle pressure that is generated by this
interfacial force density. Recognizing this unique mechanism for stress generation allows us to define a much
more physically plausible surface tension. We clarify the utility of the swim pressure as an “equivalent pressure”
(analogous to those defined from electrostatic and gravitational body forces) and the conditions in which this
concept can be appropriately applied.
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I. INTRODUCTION

While the development of a formal nonequilibrium statisti-
cal description of active particles remains an exciting and on-
going challenge [1–9], mechanical descriptions have proven
to be a powerful tool in describing many of the seemingly
confounding behaviors of active particles. Work, pressure, and
tension are well-defined mechanical concepts and can thus
be computed for materials arbitrarily far from equilibrium. In
recent years, the pressure of active matter [10–15] has aided
in the description of many phenomena including instabilities
exhibited by expanding bacterial droplets [16], the dynamics
of gels [17,18] and membranes [19] embedded with active
particles, and even the phase behavior of living systems [20].
Among the phenomena that active pressure has successfully
described is the stability limit [21–23] (the spinodal) of purely
repulsive active particles which are observed to separate into
“liquid-” and “gaslike” regions, commonly referred to as
motility-induced phase separation [24,25]. Yet upon using this
same active pressure to compute a surface tension [cf. Eq. (2)]
between the coexisting phases, one alarmingly finds that it is
extremely negative despite the presence of a stable [e.g., a
tendency for the system to reduce the interfacial area as shown
in Fig. 1(a)] interface [26,27].

In this article, we reveal that the reported anomalous
surface tension points to a larger issue in the mechanics of
active matter: the swim pressure [11–13]—argued to be the
nonequilibrium generalization of the equilibrium Brownian
osmotic pressure—is, in fact, not a true pressure. By this we
mean it is not a pointwise defined surface force (or stress),
the relevant stresses in mechanically defining the interfacial
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tension [28]. If not a true pressure or surface force, why do
swimmers exert a higher pressure on boundaries relative to
passive particles? Here, we demonstrate that the enhanced
pressure exerted by active particles originates from a local
self-generated active force density that arises from the active
dynamics and the reduction of swimming at a boundary
(e.g., at a hard wall or even a gas-liquid interface). What is
referred to as the swim pressure is in actuality an elevated (rel-
ative to the bulk) value of the traditional sources of pressure.
The localized active force density acts as a body force and
balances a pressure difference between bulk and the boundary.
In revealing the microscopic origins of the swim pressure, we
clarify its applicability and, in the process, recover a more
physically plausible surface tension.

II. STRESS GENERATION IN ACTIVE MATTER

We begin by discussing the enabling concepts behind the
swim pressure (or stress) idea. Consider a simple model
for an overdamped active particle: each particle exerts a
constant self-propulsive force Fswim = ζU0q in a direction
q in order to move at a speed U0 in a medium of resis-
tance ζ . The particle orientation q undergoes random re-
orientation events that result in a characteristic reorienta-
tion time τR and run length (the distance a particle travels
before reorienting) of U0τR. On timescales longer than τR,
these dynamics give rise to a diffusivity Dswim = U 2

0 τR/6
(in 3D [29]) which can be entirely athermal in origin.
This swim diffusivity results in a dilute suspension of ac-
tive particles with number density n0 exerting a single-
body diffusive pressure on a boundary �swim = n0ζU 2

0 τR/6 =
n0ζDswim [11–13]. This diffusive pressure can be thought
of as the nonequilibrium extension of the thermal osmotic
pressure exerted by equilibrium Brownian colloids �B =
n0kBT = n0ζDT (where kBT is thermal energy and DT is the
Brownian diffusivity). By analogy to thermal systems, one can
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FIG. 1. (a) Spherical active “liquid” droplet with a system total
of 108 000 active particles (volume fraction of φ = 4πa3n0/3 =
0.14, where n0 is the number density) with PeR = 0.0025.
(b) A characteristic simulation snapshot for PeR = 0.0025 and φ =
0.15 with 148 716 particles and an asymmetric box with dimensions
Lz = 5Lx = 5Ly. (c) The accompanying number density, polar order,
and nematic field profiles along the long axis (z) of the simulation
cell. The data is translated such that the dense phase is centered along
the long axis. The shaded regions are responsible for the previously
reported negative surface tension (Qyy > 0). Cartoon insets illustrate
representative particle orientations.

define an active energy scale ksTs ≡ ζDswim = ζU 2
0 τR/6 such

that �swim = n0ksTs [21].
Unlike the diffusive pressure of thermal Brownian colloids

(the nkBT contribution to the total pressure), the swim pres-
sure (1) need not be isotropic [and is therefore properly a
swim stress σswim with �swim = −tr(σswim)/3] as the direction
of swimming could be biased (e.g., by an applied orienting
field [30]) and (2) explicitly depends on the volume fraction
φ of active particles. The latter effect is a consequence of
interparticle interactions impeding a particle’s ability to swim,
reducing the actual swimming velocity (and thus the run
length and swim pressure) from the intrinsic swim speed U0

with increasing particle concentration. We can include this

effect as well as the influence of anisotropic swimming in
the general expression for the local swim stress [13,30] for
particles interacting with isotropic conservative interactions
(particle orientations q are independent):

σswim = −ζU0UτR

2
[Q + nI/3], (1)

where U is the magnitude of the particle velocity in the direc-
tion of swimming, Q = ∫

P(x, q)(qq − I/3)dq is the traceless
nematic order (0 for an isotropic system), n = ∫

P(x, q)dq is
the local number density, P(x, q) is the probability density of
an active particle having position x and orientation q, and I is
the identity tensor.

The reduction in swim pressure with concentration occurs
for large run lengths (U0τR � a or PeR ≡ a/U0τR � 1, where
a is the particle radius) and can lead the total pressure or
the “active pressure” (the sum of the swim pressure and any
other sources of pressure, such as interparticle interactions) to
become nonmonotonic. This mechanical instability manifests
through the phase separation of active particles. Figure 1(a)
illustrates a phase separated active matter simulation [31,32]
for highly persistent (PeR = 0.0025), overdamped, and non-
Brownian (DT = 0) active particles interacting with a steeply
repulsive WCA [33] potential (PeS ≡ ζU0a/ε = 0.01, where
the Lennard-Jones diameter is taken to be 2a and ε is the
Lennard-Jones energy). Full simulation details are provided
in Appendix A. The active dynamics are fully encapsulated
in PeR and PeS , the latter of which will be held constant
throughout this article. One immediately appreciates that the
liquid region forms a stable spherical domain, tending to
minimize the surface area.

While the surface tension cannot be defined thermodynam-
ically as the excess free energy for this driven system, one can
define it mechanically [28] as the “minimum” work required
to create a differential area (at fixed volume) of interface in a
planar (slab) geometry, resulting in

γ = −
∫ +∞

−∞
[σzz − σyy]dz, (2)

where σi j are the components of the appropriate stress tensor
σ and z is the direction normal to the interface [34]. Upon
defining the stress tensor as the sum of the swim stress and
the traditional sources of particle stress σP (arising from
interparticle interactions for our system)—we refer to this
sum as the active stress σact—Eq. (2) results in a surface
tension that is extremely negative γ ∼ O(−n0ksTsa) [26,27],
in striking contrast to our physical intuition that a me-
chanically stable interface must have a positive surface
tension.

In an attractive colloidal or molecular fluid, there is an
excess of tangential stress (i.e., σyy > σzz and γ > 0) within
the interface. In contrast, Bialké et al. [26] observed that,
within the low density region of the interface where U ≈
U0 [see the shaded regions in Fig. 1(c)], the particles are
aligned tangential to the interface [35], generating a strongly
anisotropic local swim stress (|σ swim

yy | � |σ swim
zz |, where both

stresses are negative) and a negative surface tension.
The problem is that the active interface cannot simply be

described by the density and nematic order: an unavoidable
feature of the interface is that the particles, on average, point
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FIG. 2. (a) Measured components of the interparticle stress and
the stress predicted through the integral of the swim force density
for the identical system in Fig. 1(c). (b) The difference in the
swim pressure between the gas and liquid phases as a function
of the interparticle pressure difference between the liquid and gas
phases. Each point represents a distinct value of PeR. Pressures are
normalized by n0ksTs.

towards the liquid phase as particles pointing towards the
gas are free to escape. This polarization of active particles
can be quantified through the polar order defined as m =∫

P(x, q)q dq, as is shown in Fig. 1(c). This polarization of
the particles results in volume elements within the interface
having a swim force density ζU0m.

It is important to recognize that while this interfacial force
density emerges naturally—it is internally generated—its role
will be no different than an externally applied body force
(e.g., gravity). In the absence of particle flow, acceleration,
or any applied external forces, a simple pointwise momentum
balance on the active particles must result in

∇ · σ + ζU0m = 0, (3)

where σ is the stress that must balance the force density
created by the polarization of the active particles. From
Eq. (3) we can immediately recognize that there will be a
rapid stress variation across the interface due to the local-
ized swim force density: the liquid and gas phases have
different pressures. We further examine this breakdown of
the commonly presumed coexistence criterion of pressure
equality by integrating the swim force density profile found in
simulation to obtain the predicted stress (or pressure) profile
(σ m

zz ) up to an additive constant. As shown Fig. 2(a), the
liquid and gas phase pressures are indeed strikingly disparate
and the predicted stress profile precisely matches the inter-
particle stress (σP): σ in Eq. (3) does not include the swim
stress and is simply σP, which, for our system, is the stress
arising from conservative interparticle interactions. We can
mechanically describe the system without any notion of swim
pressure.

Understanding the above finding requires revisiting the
microscopic origins of the swim stress. Consider a simple
2D system of ideal (noninteracting) active Brownian particles
(ABPs) in the presence of an impenetrable wall with a normal
in the +z direction [see Fig. 3(a)]. The measured wall pressure
is n∞(kBT + ksTs), and, in the absence of flow, acceleration,
and externally applied body forces, previously led to the con-
clusion that active particles exert a mechanical swim pressure
that is spatially homogeneous. However, the active particles
accumulate on and orient towards the boundary [see Fig. 3(b)]
with a thickness proportional to a microscopic length scale

FIG. 3. (a) Schematic system of active Brownian particles near a
hard wall. For ksTs/kBT = 5 and a 2D system (b) the number density,
polar order, and nematic fields and the (c) force flux, number density,
and local stress profiles.

δ = √
DT τR [36]. From our previous discussion, we now

recognize that the presence of a swim force density ζU0mz

within the boundary layer must be considered in the momen-
tum balance. This suggests that, in contrast to most studies
(notwithstanding [37]), the stress is not spatially constant.
Figure 3(c) reveals that the stress profile found by integrating
ζU0mz is precisely the anticipated Brownian osmotic stress
[−σ m

zz = n(z)kBT ]. Just as before, σ in Eq. (3) is simply
the traditional sources of stress σP and does not include the
swim stress. We have explicitly found (using a procedure [38]
described in the Supplemental Material [39]) that the local
stress generated by the Brownian force −FB is precisely
−n(z)kBT , while that generated by the swim force −F swim is
negligible. We further note that for ideal ABPs the absence of
the swim stress can be rigorously shown to be true as the flux
of density n is zero everywhere jn = −DT ∇n + U0m = 0,
which is equivalent to Eq. (3) with σ = σP = −nkBT I.

Further, consider inserting a wall into the bulk region
of the active particles as depicted in Fig. 3(a). One would
instantaneously measure a stress of −σzz = −σ P

zz = n∞kBT
as it is only after a time τR that the accumulation boundary
layer forms and the resulting swim force density raises the
pressure −σ P

zz at the wall to be n∞(kBT + ksTs) (via increasing
the density). It was previously shown that the details of
the particle-wall interaction can alter the measured pressure
exerted on the boundary [14]. This observation lead to the
conclusion that active matter does not generally admit an
equation of state as the pressure in bulk and at the boundary
may differ if the boundary exerts torques on the active par-
ticles. Our findings illustrate that even in the absence of such
particle-wall interactions, there is always a pressure difference
between the bulk and the boundary and the self-generated
swim force density balances this difference.
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III. ORIGINS AND APPLICABILITY
OF THE SWIM STRESS

Why is it that the swim force density which balances a
pressure difference between the wall and boundary is pre-
cisely the swim pressure? To address this, we turn to the
steady-state conservation equation for the polar order field
which can readily be derived from the full Smoluchowski
equation [23,36,40–42] as

−∇ · jm − 2

τR
m + � = 0, (4)

where � represents any externally applied sink or sources of
polar order (including torque-exerting boundaries [14,41,43])
and −2m/τR is a natural sink that arises due to rotary dif-
fusion of the active particles. The flux of polar order is
jm = U [Q + nI/3] − DT ∇m. Substituting the above expres-
sion into Eq. (3) gives

∇ · σP + 1
2ζU0τR(−∇ · jm + �) = 0. (5)

Thus, near a planar no flux boundary, the pressure difference
between the boundary and bulk must be −σ P

zz|wall + σ P
zz|∞ =

1
2ζU0τR(− jm,zz|wall + jm,zz|∞) = n∞ksTs. We can also recog-
nize that many of the interesting dependencies of the force on
a boundary exerted by active matter can now all be understood
within this perspective. The dependence of this force on
the boundary curvature [36,44,45], particle-boundary interac-
tions [14], and other details that would not affect the pressure
of passive matter naturally follows from the sensitivity of
the active force density (polar order) to these details and the
coupling of polar order and stress through Eq. (3).

How can we understand the absence of the swim stress
from the above discussion yet its success in describing a host
of behaviors? Using Eq. (4), we can express the momentum
balance Eq. (6) [46] as

∇ · σact + 1
2τRζU0� = 0, (6)

where

σact = σP − 1
2τRζU0 jm = σP + σswim + 1

2τRζU0DT ∇m.

(7)
Equation (6) is the frequently used continuum momentum
balance [41,43] but it is crucial to appreciate that σact is no
longer the system stress as it contains elements from the
original body force ζU0m (those that could be expressed as
a divergence of a tensor), recast as σswim. The true stress
remains σP. This is analogous to the pressure field p of a static
liquid of density ρ subject to a gravitational field g (acting
in the −z direction). The momentum balance for this system
∇p + ρg = 0 is often expressed as ∇P = 0, where P =
p + ρgz is often referred to as an “equivalent” pressure. One
would obviously not conclude that the hydrostatic pressure is
independent of the depth simply because P is a constant—the
true pressure is p just as the true stress of active matter is
encapsulated in σP, with the swim stress playing a similar
role as the gravitational potential ρgz [23]. A similar analogy
can be made between the swim stress and the Maxwell stress
in electrostatics, which represents the body force acting on
charge density from an electric field [47]. We further note that
in the more generalized momentum balance which includes
the transient terms in the conservation equations [e.g., Eqs. (3)

(a) (b)

FIG. 4. (a) Surface tension of active particles obtained through
use of the true stress (©) of active particles [see (b) for a magnified
view] in comparison to that obtained using the active stress (�).

and (4)] derived by Epstein et al. [15], one cannot readily
absorb the swim stress into the true stress tensor to define
the active stress. The active stress is therefore only rigorously
applicable in the steady state or quasisteady state (e.g., slowly
relaxing polar order field).

IV. SURFACE TENSION OF PHASE SEPARATED
ACTIVE PARTICLES

With the origin of the swim stress now more clearly
established, we can begin to decipher the utility as well as
the potential pitfalls of invoking it by returning to the context
of active phase separation. In the absence of external sources
and sinks of polar order (i.e., no net torques anywhere in
the system � = 0), invoking the swim stress and Eq. (6)
implies a spatially constant active stress [confirmed for the
wall situation in Fig. 3(c)] and thus restores the convenient
coexistence criterion of equal active pressures between the
liquid and gas phases. Indeed, the difference in interaction
pressure between the two phases is equal and opposite to the
difference in swim pressures [see Fig. 2(b)]. Simply knowing
that the particles can rotate freely allows one to invoke the
active stress perspective and bypass solving for the swim force
density within microscopic boundary layers so long as one is
not looking to define the stress at a point in space.

Despite its utility as a phase coexistence criterion, using
the active stress to compute the surface tension results in
the extremely negative interfacial tension [see Fig. 4(a)] that
strongly contrasts with our physical observations. We now
recognize that this is because the surface tension requires use
of the true stress locally exerted by the particles σP. By using
the correct stress in Eq. (2) (which remains valid in the pres-
ence of a body force (see Appendix B), we find that the surface
tension is almost negligible and displays little dependence on
the level of particle activity. One can appreciate the smallness
of γ through the isotropy in the stress (Fig. 2).

That the surface tension is vanishingly small (rather than
significantly negative) is reassuring, but might suggest that
the active interface should be quite volatile. We note that
relating the interfacial height fluctuations of driven systems to
surface tension using standard capillary wave theory (CWT)
is problematic as the theory is formulated using equilibrium
statistical physics. Studies on the interface of driven systems
that have used CWT explicitly included thermal noise in
their systems and implicitly made the ansatz that thermal
fluctuations dominate over nonequilibrium effects [27,48–50]
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(which clearly is not applicable for our athermal system) or
have substituted the “housekeeping work” in place of the ther-
mal energy [2,26]. In addition to characterizing the athermal
source of fluctuations, the influence of numerous mechanical
factors (beyond the intrinsic surface tension measured in
this work) must be explored including the potential bending
stiffness [27] of the interface and understanding if the swim
force density plays a similar role as traditional external body
forces (e.g., gravity [51]) in suppressing interfacial height
fluctuations.

Our findings have implications that extend beyond resolv-
ing the controversy of a deeply negative surface tension.
All components of σswim are not the true stresses exerted
by particles in bulk but might be relevant at a boundary.
The mechanism by which the off-diagonal components of
σswim (e.g., shear swim stresses [52,53]) are transmitted to a
boundary is not immediately obvious and merits further inves-
tigation. Even in the absence of a torque-inducing wall [14]
[see Eq. (6)], measuring the force on a boundary in “wet”
active matter systems requires recognizing that the spatially
constant sum of the active particle �P and fluid p f pressures
will have a value far from the boundary (and thus everywhere),
which does not include the swim pressure. Only by isolating
the value of �P at the boundary can the swim pressure be
directly isolated.
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APPENDIX A: SIMULATION AND
CALCULATION DETAILS

1. Interacting, athermal active particles

In all simulations except for those shown in Fig. 3 (the
details for those simulations are provided below), the motion
of particle i is governed by the overdamped Langevin equation
Fswim

i + ∑
j 
=i FP

i j − ζUi = 0, where Fswim
i = ζU0qi is the

swim force, FP
i j is interparticle force from particle j, and Ui is

the instantaneous particle velocity. The orientation dynamics
also follow an overdamped Langevin equation LR

i − ζR�i =
0, where �i is the angular velocity of qi, LR

i is the random
reorientation torque, and ζR is the rotational drag. Note that
the rotational drag has no dynamical consequences as we can
rewrite the angular equation of motion as L̃

R
i − �i = 0 with a

redefined torque L̃
R
i , which has white noise statistics L̃

R
i = 0

and L̃
R
i (t )L̃

R
j (0) = 2δ(t )δi jI/τR, where δ(t ) and δi j are Dirac

and Kroneker deltas, respectively. These orientation dynamics
give rise to a rotational diffusivity τ−1

R that need not be thermal
in origin. We emphasize that these equations of motion are
entirely athermal as we do not include (thermal) Brownian
motion.

The interparticle force is derived from a steeply repul-
sive WCA potential [33] with an interaction energy ε and a

FIG. 5. Region of the coexistence curve explored in this work
(obtained via simulation).

Lennard-Jones diameter of 2a. Dimensional analysis of the
equations of motion reveals that the dynamics are completely
described by the reorientation Péclet number PeR ≡ a/U0τR

and a swim Péclet number PeS ≡ ζU0a/ε and the volume
fraction φ. The phase behavior of hard sphere active parti-
cles is entirely controlled by the run length of the particles
(PeR) [21]. However, for finite particle softness there can ad-
ditionally be a swim force (PeS) dependence and we therefore
hold PeS = 0.01 fixed as a control for all of our simulations.

For the isotropic simulation shown in Fig. 1(a), the par-
ticles were initially placed in an fcc packing with a lattice
constant of 3.47a. The resulting crystal is centered within the
simulation box and does not fill the entire box. This initial
configuration biases the system towards rapidly forming a
single liquid droplet rather than multiple liquid domains scat-
tered throughout the box. The latter situation would require
longer simulation times to allow the isolated liquid domains
to coalesce into a single drop. The simulation was run for a
duration of 13000a/U0. For the slab geometries, the particles
were initially placed in a space-spanning fcc packing with
a reduced initial box size Lz0 in the z direction and a final
box size of Lz = 2.66Lz0. The box is symmetrically elongated
about the z axis at a speed of ≈0.25U0 until a length of Lz

is achieved. This procedure again biases the formation of a
single liquid domain. Upon reaching the final box size, the
system is evolved for ≈9000a/U0. The data displayed in the
figures in the main text are the block average of data collected
during the final 2000a/U0 of the simulations and error bars
represent the standard deviation of the data sampled over this
time. All simulations were performed using the GPU-enabled
HOOMD-blue molecular dynamics package [31,32].

The interaction stress σP was computed using the standard
virial approach with σP = −n〈xi jFP

i j〉, where xi j is the dis-
tance between particles i and j, n is the local number density
of the system, and the brackets denote an ensemble average
over all particle pairs. The local swim stress is computed using
Eq. (1). The local number density, polar order, nematic order,
and stress profiles are found by dividing the slab geometry into
bins of thickness δz ≈ 2.4a in the z direction and averaging
over the particles within each bin. The swim pressure differ-
ence between the liquid and gas phases shown in Fig. 2(b)
was found using the local value of the swim stress in the two
phases for various values of PeR. The region of the coexistence
curve examined is shown in Fig. 5.
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2. Noninteracting active Brownian particles

The system simulated in Fig. 3 consisted of noninter-
acting Fi j = 0 active Brownian particles (ABPs) with an
equation of motion Fswim

i + FB
i + Fwall

i − ζUi = 0, where we
have now introduced a stochastic Brownian force with white
noise statistics FB

i = 0 and FB
i (t )FB

j (0) = 2kBT ζ δ(t )δi jI.
The presence of an impenetrable wall is reflected in the force
the wall must exert on a particle to prevent it from pene-
trating the boundary. The reorientation dynamics are iden-
tical to those described for the interacting system described
above. We choose to simulate a system with modest activity
(ksTs/kBT = 5) such that we can easily resolve the bound-
ary layer which becomes increasingly thin with increasing
activity [36].

APPENDIX B: SURFACE TENSION DEFINITION

Let us revisit the mechanical definition of surface tension
in order to explore if a force density within the interface
alters the traditional definition [Eq. (2) in the main text].
Consider a rectangular control volume within the interface,
shown schematically in Fig. 6. The interfacial tension is
typically defined as the work required to expand the box
in the tangential (y and x) directions by a width δy while
compressing the volume in the normal direction (z) by a width
δz such that the total volume is conserved. The latter con-
straint results in δy = −δzLy/2Lz, where Ly and Lz are shown
schematically in Fig. 6. We note that the x and y directions are
equivalent.

The work required to displace a surface of the control
volume is directly proportional to the true surface stress acting
on the surface of interest. The presence of a body force
(ζU0m) within the interface results in a normal stress σzz

variation across the interface, a feature that distinguishes an
active interface from traditional equilibrium interfaces which
only exhibit tangential stress variation σyy. We therefore take
the limit of Lz → dz (where dz is a differential length)
such that now the local stresses are approximately constant
across the control volume. Adding the work required to
move each of the six faces of the now infinitesimal volume

FIG. 6. Schematic of the interfacial mechanical balance used to
define the surface tension. The dashed red box represents a 2D
projection of the original control volume and the dotted blue line
represents the isochorically deformed volume.

results in

δW = −δA[σzz − σyy]dz, (B1)

where δA = 2Lyδy is the change in tangential surface area of
the system. We integrate this expression across the normal
direction to obtain the total work required to expand the
interface:

W = −δA
∫ +∞

−∞
[σzz − σyy]dz, (B2)

where we can now invoke the definition of the interfacial
tension as W/δA with

γ = −
∫ +∞

−∞
[σzz − σyy]dz, (B3)

where we assume that only a single interface is present within
the system. This is identical to the traditional mechanical
definition of surface tension and highlights that the presence
of a body force has no explicit effect on the surface tension;
it must be recalled, however, that σzz now varies across the
interface due to the local swim force.
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